Questo sito utilizza cookie di terze parti per inviarti pubblicità in linea con le tue preferenze. Se vuoi saperne di più clicca QUI 
Chiudendo questo banner, scorrendo questa pagina, cliccando su un link o proseguendo la navigazione in altra maniera, acconsenti all'uso dei cookie. OK

Capacity of a dispersive channel and algorithms of power and bit loading

Un sistema di modulazione Multi-Carrier (MC) trasmette le informazioni utilizzando segnali modulati a differenti frequenze portanti. In questo documento verranno presentati i principali algoritmi che determinano come viene suddivisa la potenza trasmessa nelle varie portanti.

Mostra/Nascondi contenuto.
Chapter 1 Capacity of a dispersive channel 1.1 Capacity of a dispersive channel In general, a non ideal channel (linear dispersive channel) with additive Gaussian noise is characterized as a transmission medium with impulse response gCh(t) and additive Gaussian noise w(t) having power spectral density Pw(f). Let s(t) denote the channel input signal; then the receiver input signal is given by r(t) = s ∗ gCh(t) + w(t). In practice, the transmitted signal s(t) must satisfy a constraint on the statistical power expressed as ∫ +∞ 0 Ps(f) df ≤ VP (1.1) where Ps(f) is the power spectral density of s(t). The signal-to-noise ratio of the channel as a function of frequency is defined as ΓCh(f) = |GCh(f)|2 Pw(f) (1.2) The transmission passband B, is intuitively given by the interval of frequencies cha- racterized by large values of ΓCh(f). First, we want to determine an expression of the capacity C[b/s] that extends the expression valid for an ideal AWGN channel, to the case of a dispersive channel. To this end we divide the passband B, having measure B, into N subbands Bi, i = 1, . . . , N , of width ∆f = B/N , where ∆f is chosen sufficiently small so that Ps(f) and ΓCh(f) are, to a first approximation, equal to constants within the generic subband Bi, that is we assume ∃fi ∈ Bi such that Ps(f) = Ps(fi) and ΓCh(f) = ΓCh(fi), ∀f ∈ Bi. From Shannon equation (see (6.280) in [1]) the subchannel i has a capacity, C[b/s][i] = ∆f log2 [ 1 + ∆f Ps(fi) |GCh(fi)| 2 ∆f Pw(fi) ] (1.3) The total capacity C[b/s] is obtained by summing the terms C[b/s][i], that is N∑ i=1 C[b/s][i] = ∆f N∑ i=1 log2 [ 1 + ∆f Ps(fi) |GCh(fi)| 2 ∆f Pw(fi) ] , (1.4) 5

Laurea liv.I

Facoltà: Ingegneria

Autore: Leonardo Bazzaco Contatta »

Composta da 25 pagine.

 

Questa tesi ha raggiunto 54 click dal 02/12/2010.

Disponibile in PDF, la consultazione è esclusivamente in formato digitale.