Questo sito utilizza cookie di terze parti per inviarti pubblicità in linea con le tue preferenze. Se vuoi saperne di più clicca QUI 
Chiudendo questo banner, scorrendo questa pagina, cliccando su un link o proseguendo la navigazione in altra maniera, acconsenti all'uso dei cookie. OK

Teorema della media per equazioni differenziali alle derivate parziali

According to his supervisor, Prof. D. Bambusi, he managed to discover new quantitative estimations for the motion of a slightly forced continuous mechanical system near its equilibrium point.
For discrete systems there are significative results that give an approximate description for “long time” (but not endless) of the perturbed system in terms of its “normal form”, which is obtained via a canonical coordinate transformation.
Basically this is equivalent to evaluate the functional increment between the perturbed Hamiltonian and its normal form through averaging techniques.
For system having a finite number of degrees of freedom such a transformation can always be built following a standard algorithm, but for continuous mechanical systems the method fails: indeed, even though a function can be always built, heavy resonance phenomenon prevent the ability to build its reverse, making it no more a coordinate transformation and in particular no more a canonical transformation.
The main idea followed to escape from this “no way out” state has implied a dramatic change in perspective: no more attempts to exactly transform the perturbed Hamiltonian system into its normal form via a canonical transformation, but rather the choice to quasi-transform its normal form into the former Hamiltonian via a quasi-canonical transformation, this one built as an approximation of the formal inverse of the canonical transformation if such a function would exist. The exact inverse doesn’t exist, a formal approximation would be. The final step would be estimating the errors induced by the procedure.

Mostra/Nascondi contenuto.
                  I  ffflfiffi !#"%$'&)(*!+fi', )  ffff fl ff .- ff" 0/   7 ffi:3  ? )fl  fl ;3 ff"21)  Q+fl flTS - :? ffi 31 flA+  :3  ff"  ff R7  Q+ffi   4+,7,7 fl - :? ffi   :3  O3R7  Q+ffi   ! )flff" fl fiTS  ;3       O3R7  Q+ffi   ff  hffi54 "76ff&8 h:9 ffi54& ffi (!( & fl ;4%X    ffi fl  fifl S ;- fi6 X    ffi fl  fifl S  ,?  A+  4+ &7 fi Q+ffi ;-  $ff=X<12?ff";3 -  ff U3  hffi54 "76ff&8 h:9 ffi54 "76ff&>=?Qh;@ ffi54 "76ff& ffi (!0/ff& fl XA?B1^+&7ffff  67  ;3   ! - &ff ff :-:-"C1 O3R7   -  NX   ff  .    -  TS  ffff:-  ff  fi ff"^7  - :? ffi 31 fl'+  :3   ;3       - fl     O+ffi 31 7  9+  fl Q+ fl 4+ :9+ ;-  fl 3     Q+  O3 -  D1 7     flNM  .

Tesi di Laurea

Facoltà: Scienze Matematiche, Fisiche e Naturali

Autore: Lorenzo Lerra Contatta »

Composta da 92 pagine.

 

Questa tesi ha raggiunto 2339 click dal 20/03/2004.

Disponibile in PDF, la consultazione è esclusivamente in formato digitale.