Skip to content

Evaluation of Machine Learning impact on Asset Risk Premia measurement

Gratis La preview di questa tesi è scaricabile gratuitamente in formato PDF.
Per scaricare il file PDF è necessario essere iscritto a Tesionline. L'iscrizione non comporta alcun costo: effettua il Login o Registrati.

Mostra/Nascondi contenuto.
the training data to another dataset called test data. On the other hand, Unsupervised learn 2 - ing, consist of observations where the feature set is unlabelled, and the algorithm try to ad- dress data into distinct groups. Supervised learning, can be further split into two different methods of analysis: regression and classification. Regression is typically a field of Artificial Neural Networks, whilst in Classification, the most important algorithm is the Support Vector Machine (SVM). Artificial Neural Networks (ANN) «are computing systems made up of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs» , inspired by the information processing model of the human 3 brain, and modeled after the neuronal structure of the mammalian cortex but on smaller scales. On a biological level, each neuron receives input through dendrites, which in turn are processed in the nucleus, that through the axon terminals results in an output (a behaviour). Neurons ultimately emit electrical signals, and the measure of their activity is given by the frequency with which these signals pass from the nucleus to the axon terminals (synapses). The same structure is the basis of the imitation made by machine learning. Each neuron is therefore connected with billions of other neurons, and through the synapses, the signals are propagated in the network of neurons. A big Artificial Neural Network may have thousands of processor units, whereas the human brain has approximately 86 billion (neurons), connec- ted with synapses. Figure 1: Visualization of human biological neuron Image source: A Gentle Introduction To Neural Networks Series - Part 1.” Towards Data Science, Towards Data Scien- ce, 4 Aug. 2017, towardsdatascience.com/a-gentle-introduction-to-neural-networks-series-part-1-2b90b87795bc. Accessed 22 Aug 2018 Brownlee, J. “A Tour of Machine Learning Algorithms.” Machine Learning Mastery, 2017 2 Caudill, Maureen. "Neural networks primer, part I." AI expert 2.12. 1987 3 4
Anteprima della tesi: Evaluation of Machine Learning impact on Asset Risk Premia measurement, Pagina 5

Preview dalla tesi:

Evaluation of Machine Learning impact on Asset Risk Premia measurement

CONSULTA INTEGRALMENTE QUESTA TESI

La consultazione è esclusivamente in formato digitale .PDF

Acquista

Informazioni tesi

  Autore: Pierre D'amico
  Tipo: Laurea liv.II (specialistica)
  Anno: 2017-18
  Università: Università Commerciale Luigi Bocconi di Milano
  Facoltà: Economia
  Corso: Finanza
  Relatore: Claudio Tebaldi
  Lingua: Inglese
  Num. pagine: 77

FAQ

Per consultare la tesi è necessario essere registrati e acquistare la consultazione integrale del file, al costo di 29,89€.
Il pagamento può essere effettuato tramite carta di credito/carta prepagata, PayPal, bonifico bancario, bollettino postale.
Confermato il pagamento si potrà consultare i file esclusivamente in formato .PDF accedendo alla propria Home Personale. Si potrà quindi procedere a salvare o stampare il file.
Maggiori informazioni
Ingiustamente snobbata durante le ricerche bibliografiche, una tesi di laurea si rivela decisamente utile:
  • perché affronta un singolo argomento in modo sintetico e specifico come altri testi non fanno;
  • perché è un lavoro originale che si basa su una ricerca bibliografica accurata;
  • perché, a differenza di altri materiali che puoi reperire online, una tesi di laurea è stata verificata da un docente universitario e dalla commissione in sede d'esame. La nostra redazione inoltre controlla prima della pubblicazione la completezza dei materiali e, dal 2009, anche l'originalità della tesi attraverso il software antiplagio Compilatio.net.
  • L'utilizzo della consultazione integrale della tesi da parte dell'Utente che ne acquista il diritto è da considerarsi esclusivamente privato.
  • Nel caso in cui l'Utente volesse pubblicare o citare una tesi presente nel database del sito www.tesionline.it deve ottenere autorizzazione scritta dall'Autore della tesi stessa, il quale è unico detentore dei diritti.
  • L'Utente è l'unico ed esclusivo responsabile del materiale di cui acquista il diritto alla consultazione. Si impegna a non divulgare a mezzo stampa, editoria in genere, televisione, radio, Internet e/o qualsiasi altro mezzo divulgativo esistente o che venisse inventato, il contenuto della tesi che consulta o stralci della medesima. Verrà perseguito legalmente nel caso di riproduzione totale e/o parziale su qualsiasi mezzo e/o su qualsiasi supporto, nel caso di divulgazione nonché nel caso di ricavo economico derivante dallo sfruttamento del diritto acquisito.
  • L'Utente è a conoscenza che l'importo da lui pagato per la consultazione integrale della tesi prescelta è ripartito, a partire dalla seconda consultazione assoluta nell'anno in corso, al 50% tra l'Autore/i della tesi e Tesionline Srl, la società titolare del sito www.tesionline.it.
L'obiettivo di Tesionline è quello di rendere accessibile a una platea il più possibile vasta il patrimonio di cultura e conoscenza contenuto nelle tesi.
Per raggiungerlo, è fondamentale superare la barriera rappresentata dalla lingua. Ecco perché cerchiamo persone disponibili ad effettuare la traduzione delle tesi pubblicate nel nostro sito.
Per tradurre questa tesi clicca qui »
Scopri come funziona »

DUBBI? Contattaci

Contatta la redazione a
[email protected]

Ci trovi su Skype (redazione_tesi)
dalle 9:00 alle 13:00

Oppure vieni a trovarci su

Parole chiave

artificial intelligence
neural networks
machine learning
trading systems
asset risk premia
swarm intelligence
predicting stock market
lstm
recurrent neural networks
long short term memory

Non hai trovato quello che cercavi?


Abbiamo più di 45.000 Tesi di Laurea: cerca nel nostro database

Oppure consulta la sezione dedicata ad appunti universitari selezionati e pubblicati dalla nostra redazione

Ottimizza la tua ricerca:

  • individua con precisione le parole chiave specifiche della tua ricerca
  • elimina i termini non significativi (aggettivi, articoli, avverbi...)
  • se non hai risultati amplia la ricerca con termini via via più generici (ad esempio da "anziano oncologico" a "paziente oncologico")
  • utilizza la ricerca avanzata
  • utilizza gli operatori booleani (and, or, "")

Idee per la tesi?

Scopri le migliori tesi scelte da noi sugli argomenti recenti


Come si scrive una tesi di laurea?


A quale cattedra chiedere la tesi? Quale sarà il docente più disponibile? Quale l'argomento più interessante per me? ...e quale quello più interessante per il mondo del lavoro?

Scarica gratuitamente la nostra guida "Come si scrive una tesi di laurea" e iscriviti alla newsletter per ricevere consigli e materiale utile.


La tesi l'ho già scritta,
ora cosa ne faccio?


La tua tesi ti ha aiutato ad ottenere quel sudato titolo di studio, ma può darti molto di più: ti differenzia dai tuoi colleghi universitari, mostra i tuoi interessi ed è un lavoro di ricerca unico, che può essere utile anche ad altri.

Il nostro consiglio è di non sprecare tutto questo lavoro:

È ora di pubblicare la tesi