Questo sito utilizza cookie di terze parti per inviarti pubblicità in linea con le tue preferenze. Se vuoi saperne di più clicca QUI 
Chiudendo questo banner, scorrendo questa pagina, cliccando su un link o proseguendo la navigazione in altra maniera, acconsenti all'uso dei cookie. OK

Dinamica e controllo di satelliti in formazione

L'idea innovativa di distribuire le prestazioni offerte da un singolo grande satellite su di una flotta di piccole unità cooperanti, vincolate a muoversi secondo traiettorie opportune, offre molti vantaggi ed è stata considerata per numerose missioni ed applicazioni future.
La sua implementazione pratica risiede nella possibilità di controllare le distanze relative e l'orientamento dei satelliti membri. Le manovre di formation-keeping, ovvero di mantenimento di una geometria desiderata, vengono realizzate tramite controllo in retroazione di una varietà di variabili di stato o di elementi orbitali, che vengono forzati ad inseguire un target. In tale ambito, l'utilizzo del semplice modello di Hill per la valutazione del moto relativo introduce le approssimazioni di Terra sferica ed orbita di riferimento perfettamente circolare: diretta conseguenza è un elevato consumo di propellente o comunque un eccessivo valore per l'errore. Allo scopo di rimuovere la prima di tali limitazioni, e tenere quindi conto anche degli effetti associati alla seconda armonica zonale del campo gravitazionale, Schweighart ha sviluppato un nuovo sistema linearizzato.
In questa tesi viene riportata una sua verifica numerica nei due casi di moto assoluto e relativo della formazione: utilizzando l'equazione delle perturbazioni per il calcolo degli errori, si possono rilevare significativi miglioramenti della soluzione rispetto a quella del frame di Hill.
L'obiettivo finale è la sintesi di un regolatore con retroazione completa dello stato, utilizzando il nuovo modello dinamico. Questo, infatti, oltre a permettere l'impiego della semplice tecnica LQ per la valutazione dei guadagni, consente anche di indirizzare le azioni propulsive allo specifico bilanciamento delle accelerazioni di flattening, completamente assenti nel modello di Hill.
Nel caso specifico è stata inseguita una projected circular orbit con raggio pari a 100 m e l'integrazione del sistema linearizzato ha consentito di ottenere una stima della legge di spinta e dei consumi. È anche fornita un'interpretazione geometrica degli effetti del controllo sul tumbling del piano del moto relativo.
Infine, utilizzando la tecnica di inseguimento della variazione del riferimento viene progettato un secondo regolatore ed è indicata la scelta delle condizioni iniziali per l'integrazione dell'equazione delle perturbazioni ad anello chiuso.

Mostra/Nascondi contenuto.
vii Scopo della tesi L'idea innovativa di distribuire le prestazioni offerte da un singolo grande satellite su di una flotta di piccole unità cooperanti, vincolate a muoversi secondo traiettorie opportune, offre molti vantaggi ed è stata considerata per numerose missioni ed applicazioni future. La sua implementazione pratica risiede nella possibilità di controllare le distanze relative e l'orientamento dei satelliti membri. Le manovre di formation-keeping, ovvero di mantenimento di una geometria desiderata, vengono realizzate tramite controllo in retroazione di una varietà di variabili di stato o di elementi orbitali, che vengono forzati ad inseguire un target. In tale ambito, l'utilizzo del semplice modello di Hill per la valutazione del moto relativo introduce le approssimazioni di Terra sferica ed orbita di riferimento perfettamente circolare: diretta conseguenza è un elevato consumo di propellente o comunque un eccessivo valore per l'errore. Allo scopo di rimuovere la prima di tali limitazioni, e tenere quindi conto anche degli effetti associati alla seconda armonica zonale del campo gravitazionale, Schweighart ha sviluppato un nuovo sistema linearizzato. In questa tesi viene riportata una sua verifica numerica nei due casi di moto assoluto e relativo della formazione: utilizzando l'equazione delle perturbazioni per il calcolo degli errori, si possono rilevare significativi miglioramenti della soluzione rispetto a quella del frame di Hill. L'obiettivo finale è la sintesi di un regolatore con retroazione completa dello stato, utilizzando il nuovo modello dinamico. Questo, infatti, oltre a permettere l'impiego della semplice tecnica LQ per la valutazione dei guadagni, consente anche di indirizzare le azioni propulsive allo specifico bilanciamento delle accelerazioni di flattening, completamente assenti nel modello di Hill. Nel caso specifico è stata inseguita una projected circular orbit con raggio pari a 100 m e l'integrazione del sistema linearizzato ha consentito di ottenere una stima della legge di spinta e dei consumi. È anche fornita un'interpretazione geometrica degli effetti del controllo sul tumbling del piano del moto relativo. Infine, utilizzando la tecnica di inseguimento della variazione del riferimento viene progettato un secondo regolatore ed è indicata la scelta delle condizioni iniziali per l'integrazione dell'equazione delle perturbazioni ad anello chiuso.

Tesi di Laurea

Facoltà: Ingegneria

Autore: Riccardo Ricelli Contatta »

Composta da 107 pagine.

 

Questa tesi ha raggiunto 1756 click dal 20/03/2004.

 

Consultata integralmente 2 volte.

Disponibile in PDF, la consultazione è esclusivamente in formato digitale.