1 
CHAPTER	
  1:	
  INTRODUCTION	
  TO	
   THE	
  SUDY	
  OF	
   TRAVERTINE	
  
	
  
1	
   –	
   INTRODUCTION:	
  THESIS	
  AIMS 	
  
Travertines	
   are	
   terrestrial	
   carbonates	
   that	
   are	
   deposited	
   exclusively	
   by	
   water	
   issuing	
   from	
  
hydrothermal	
  springs	
  according	
  to	
  the	
  definition	
  by	
  Pedley	
  (1990).	
  
Pleistocene-‐Holocene	
   hydrothermal	
  spring	
  travertines	
  have	
  attracted	
  attention	
  for	
  centuries	
  since 	
  
the	
  Romans	
  extensively	
  quarried	
  the	
   lapis	
  tiburtinus	
   as	
  a	
  construction	
  building	
  stone.	
  Travertines	
  
have	
   been	
   the	
   focus	
   of	
   numerous	
   studies	
   about	
   Quaternary	
   geology,	
   geomorphology,	
  
hydrogeology,	
  Neogene	
  tectonics	
  and	
  paleoclimatology.	
  In	
  the	
  last	
  decades	
  several	
  travertine	
  
depositing	
  sites	
  were	
  studied	
  in	
  detail	
  from	
  a	
  sedimentological	
  and	
  carbonate	
  petrography	
  point	
  
of	
  view:	
  Tivoli	
  travertines	
  near	
  to	
  Rome	
  (Chafetz	
  and	
  Folk,	
  1984;	
  Faccenna	
  et	
  al.,	
  2008),	
  Mammoth	
  
Hot	
  Spring	
  in	
  Yellowstone	
  National	
  Park	
  (Wyo ming,	
  USA,	
  Pentecost,	
  1990;	
  Fouke	
  et	
  al.,	
  2000)	
  and	
  
Pamukkale	
  (Altunel	
  and	
  Hancock,	
  1993).	
  
There	
  are	
  many	
  open	
  questions	
  regarding	
  the	
  type	
  of	
  precipitation	
  process	
  controlling	
  some	
  
travertine	
  fabrics,	
  abiotic	
  vs.	
  biologically	
  (microbial)	
  mediation.	
  The	
  sc ientific	
  community	
  working	
  
on	
  travertines	
  is	
  still	
  divided	
  on	
  this	
  point.	
  It	
  is	
  not	
  possible	
  to	
  clearly	
  establish	
  whether	
  travertine	
  
precipitation	
  is	
  a	
  fully	
  abiotic	
  or	
  microbially	
  induced	
  process.	
  It	
  is,	
  however,	
  first	
  of	
  all	
  important	
  to	
  
produce	
   a	
   detailed	
   database	
   of	
   the	
   different	
   fabric	
   types	
   and	
   their	
   occurrence	
   in	
   specific	
  
depositional	
  settings,	
  controlled	
  by	
  hydrothermal	
  water	
  temperature,	
  velocity	
  of	
  flow	
  and	
  degree	
  
of	
  turbulence	
  to	
  clearly	
  determine	
  the	
  physical	
  factors	
  affecting	
  travertine	
  carbona tes.	
  This	
  is	
  what	
  
has	
  been	
  attempted	
  in	
  this	
  study.	
  
This	
  thesis	
  investigates	
  the	
  travertine	
  deposits	
  of	
  the	
  Tronto	
  valley,	
  more	
  precisely	
  the	
  travertine	
  
deposits	
  in	
  the	
  Acquasanta	
  Terme	
  area	
  (Upper	
  Pleistocene),	
  about	
  20	
  km	
  from	
  Ascoli	
  Piceno,	
  
Southern	
  Mar che	
  (Central	
  Italy).	
  
Different	
  travertine	
  units	
  were	
  analysed	
  within	
  two	
  quarries	
  that	
  show	
  different	
  depositional	
  
systems	
  and	
  are	
  placed	
  at	
  two	
  different	
  topographic	
  elevations:	
  Tancredi	
  quarry	
  (451m)	
  and	
  Cardi	
  
quarry	
  (335m).	
  These	
  elevations	
  relate	
  to	
  different	
  depositional	
  phases	
  and	
  ages;	
  in	
  fact	
  the	
  lower	
  
unit	
  is	
  the	
  youngest	
  due	
  to	
  its	
  position	
  along	
  the	
  fluvial	
  valley	
  incision	
  of	
  the	
  Tronto	
  River. 	
  
The	
  aims	
  of	
  the	
  project	
  are: 	
  
1. 	
  To	
  analyse,	
  describe	
  and	
  interpret	
  the	
  depositional	
  setting	
  of	
  the	
  several	
  carbonate	
  fabrics	
  
of	
  the	
  Acquasanta	
  travertine	
  proposing	
  a	
  general	
  classification	
  of	
  the	
  carbonate	
  fabrics.	
  
2 
2. To	
  understand	
  the	
  interaction	
  between	
  the	
  precipitation	
  (calcite	
  or	
  arag onite)	
  and	
  the	
  hy-‐
drothermal	
  water.	
  
3. To	
  better	
  comprehend	
  the	
  interactions	
  between	
  carbonate	
  fabrics	
  and	
  depositional	
  sy s-‐
tems,	
  suggesting	
  the	
  precipitation	
  process	
  and	
  hydrothermal	
  water	
  energy	
  of	
  each	
  deposit	
  
type.	
  
4. To	
  establish	
  how	
  travertine	
  facies	
  can	
  affect	
  the	
  formation	
  of	
  a	
  good	
  reservoir	
  analysing	
  
the	
  values	
  of	
  porosity	
  and	
  permeability.	
  
The	
  results	
  from	
  the	
  study	
  of	
  the	
  Acquasanta	
  travertine	
  deposits	
  contribute	
  to	
  the	
  knowledge	
  
about	
   travertine	
   systems	
   and	
   can	
   be	
   a	
   good	
   example	
   for	
   comparisons	
   with	
   others	
   different	
  
deposits	
  in	
  Italy	
  and	
  worldwide.	
  The	
  outcomes	
  of	
  this	
  study	
  can	
  help	
  to	
  better	
  understand	
  the	
  
relationship	
  between	
  carbonate	
  facies,	
  their	
  porosity	
  and	
  permeability	
  types	
  and	
  depositional	
  
system	
  geometry.	
  
	
  
3 
2	
   –	
   INTRODUCTION	
  TO	
  TRAVERTINE:	
   WHAT	
  TRAVERTINE	
  DEPOSITS	
  ARE? 	
  
The	
  term	
  travertine	
  describes	
  all	
   non-‐marine	
   carbonate	
  deposits	
  that	
  form	
  as	
   precipitated	
  from	
  
hydrothermal	
   water	
   (temperature	
   >	
   20⁰C)	
   issuing	
   from	
   springs	
   and	
   subaerial	
   vents	
   with	
   a	
  
crystalline	
  primary	
  fabric	
  (Ford	
   and	
   Pedley,	
   1996;	
  Riding,	
   2002).	
  Pedley	
  (1990)	
  and	
  Ford	
  and	
  Pedley	
  
(1996)	
   addressed	
   carbonates	
   precipitated	
   from	
   non -‐hydrothermal	
   continental	
   fresh	
   water	
   of	
  
fluvial-‐marsh	
  origin	
  and	
  karstic	
  springs	
  as	
  “Calcareous	
  Tufa”	
  or	
  Tufa	
  (Fig.	
  2.1B).	
  
There	
  are,	
  however,	
  differ ent	
  definitions,	
  usages	
  and	
  meanings	
  of	
  the	
  term	
  travertine.	
  Riding	
  
(1991)	
  considered	
  high	
  temperature	
  as	
  the	
  most	
  important	
  feature	
  of	
  water	
  depositing	
  travertines,	
  
which	
  were	
  defined	
  as	
  "a	
  product	
  of	
  warm	
  carbonate	
  springs	
  where	
  the	
  elevated	
  temperatures,	
  
together	
  with	
  the	
  dissolved	
  materials	
  present	
  in	
  these	
  warm	
  waters,	
  exclude	
  most	
  eukaryotic	
  
organisms".	
  
Pentecost	
  and	
  Viles	
  (1994)	
  proposed	
  a	
  different	
  nomenclature	
  for	
  terrestrial	
  carbonate	
  deposits	
  
precipitated	
  by	
  water	
  issuing	
  from	
  sub-‐aerial	
  springs:	
   they	
  adopted	
  the	
  term	
  travertine	
  for	
  all	
  such	
  
carbonate	
  deposits	
  distinguishing	
  between	
  thermogene	
  travertine	
  and	
  meteogene	
  travertine. 	
  
Meteogene	
   travertine 	
  deposits	
  are	
   those	
   carbonates	
   precipitated	
   from	
   groundwater	
   with	
   a	
  
meteoric	
  carrier	
  (Pentecost,	
  2005).	
   Meteogene	
  travertine s	
  are	
  those	
  related	
  to	
   cold-‐water	
   spring	
  
(ambient	
   temperature	
   <20°C)	
   in	
   regions	
   underlain	
   by	
   carbonate	
   limestone	
   substrate,	
   and	
  
consequently	
  they	
  are	
  equivalent	
  to	
  the	
  calcareous	
  tufa	
  defined	
  by	
  Pedley	
  (1990).	
  
Thermogene	
  travertine 	
  deposits	
  form	
  by	
  precipitation	
  from	
  hydrothermal	
  water	
  (Pentecost,	
  2005).	
  
Carbon	
  dioxide	
  dissolves	
  in	
  magmatically	
  heated	
  groundwater	
  and	
  the	
  high	
  concentration	
  of	
   CO
2
	
  
can	
   bring	
   to	
   dissolution	
   of	
   large	
   volumes	
   of	
   limestone	
   rocks.	
   Thermogene	
   travertines	
   ar e	
  
deposited	
  when	
  hydrothermal	
  water	
  issues	
  from	
  vents.	
  These	
  hydrothermal	
  deposits	
  have	
  a	
  more	
  
localised	
  distribution	
  than	
  the	
  meteogene	
  travertine	
  and	
  are	
  often	
  associated	
  with	
  regions	
  of	
  
recent	
  volcanism	
  or	
  tectonic	
  activity	
  (Pentecost,	
  2005).	
  
Fouke	
  et	
  al.	
  (2000;	
   2011),	
  in	
  more	
  recent	
  studies	
  about	
  the	
  Yellowstone	
  (Wyoming,	
  USA)	
  hot-‐
spring	
  travertine ,	
  adopted	
  Pentecost	
  and	
  Viles	
  (1994)	
  definition	
  deciding	
  that	
  high	
  temperature	
  is	
  
not	
  the	
  major	
  diagnostic	
  feature	
  but	
  rather	
  the	
  type	
  of	
  process	
   driving	
  carbonate	
  precipitation.	
  In	
  
fact	
  they	
  named	
  travertine	
  “all	
  non-‐	
   marine	
  carbonate	
  precipitates	
  in	
  or	
  near	
  terrestrial	
  springs,	
  
rivers,	
  lakes	
  and	
  caves”.	
  
In	
  this	
  study ,	
  the	
  term	
  travertine	
  will	
  be	
  used	
  to	
  address	
  carbonate	
  deposited	
  by	
  water	
  issuing	
  
from	
  hydrothermal	
  springs	
  according	
  to	
  Pedley	
  (1990)’s 	
  definition.	
  
4 
	
  
	
  
Fig.	
  1.1:	
  A)	
   Calcareous	
  Tufa	
   forming	
  a	
  dam	
  along	
  a	
  stream	
  with	
  a	
  small	
  rim	
  and	
  Pool	
  (bank	
  of	
  Tronto	
  River);	
  B)	
  
Travertine	
  deposit	
  with	
  a	
  smooth	
  slope	
  (Oliviera 	
  Quarry	
  near	
  Rapolano,	
  Tuscany) .	
  
	
   	
  
5 
3	
   -‐ 	
   TRAVERTINE	
  PRECIPITATION 	
  
Most	
   travertines	
   form	
   from	
   the	
   degassing	
   of	
   surfacing	
   carbon	
   dioxide-‐rich	
   groundwaters	
  
containing	
  >2	
  mmol	
  L
–1
	
  (c.	
  80	
  ppm)	
  calcium	
  (Pentecost,	
  2005).	
  
A	
   groundwater	
   capable	
   of	
   depositing	
   travertine	
   is	
   produced	
   when	
   dissolved	
   carbon	
   dioxide	
  
(‘carbonic	
  acid’)	
  attacks	
  carbonate	
  rocks	
  to	
  form	
  a	
  solution	
  containing	
  calcium	
  and	
  bicarbonate	
  
ions	
  (‘calcium	
  bicarbonate’)	
  (Pentecost,	
  2005): 	
  
	
  
CaCO
3
	
  +	
  CO
2
	
  +	
  H
2
O	
  =	
  Ca
2+
	
  +	
  2(HCO
3
)
–
	
   	
   	
   Eq.	
  1 	
  
	
  
Travertine	
   deposition	
  is	
  the	
  reverse	
  of	
  the	
  reaction	
  in	
  Eq.	
  1.	
  Carbon	
  dioxide	
  is	
  lost	
  from	
  solution	
  on	
  
contact	
  with	
  the	
  atmosphere	
  whose	
  CO
2
	
  concentration	
  is	
  lower	
  than	
  that	
  in	
  equilibrium	
  with	
  the	
  
‘attacking’	
  groundwater	
  solution	
  (Pentecost,	
  2005).	
  The	
  sources	
  of	
  underground	
  carbon	
  dioxide	
  
capable	
  of	
  dissolving	
  carbonate	
  rocks	
  (hence	
  termed	
  the	
  carrier	
  CO
2
	
  or	
  ‘carrier’)	
  are	
  manifold.	
  In	
  
calcareous	
  tufa	
  where	
  the	
  release	
  of	
  carbon	
  dioxide	
  occurs	
  to	
  the	
  atmosphere,	
  additional	
  CO
2
	
  loss	
  
frequently	
  occurs	
  through	
  the	
  photosynthesis	
  of	
  aquatic	
  plants	
  and	
  evaporation	
  (Pentecost,	
  2005).	
  
A	
   few	
   travertines	
   are	
   formed	
   by	
   the	
   reaction	
   between	
   atmospheric	
   carbon	
   dioxide	
   and	
  
hyperalkaline	
  groundwater	
  (Eq.	
  2):	
  
	
  
Ca(OH)
2	
  
+	
  CO
2	
  
=	
  CaCO
3	
  
+	
  H
2
O	
  	
   	
   	
   Eq.	
  2 	
  
	
  
These	
  groundwaters	
  most	
  frequently	
  occur	
  in	
  regions	
  undergoing	
  serpentinization	
  (O’Neil	
  and	
  
Barnes,	
  1971)	
   or	
   those	
   in	
   contact	
   with	
   natural	
   or	
   industrially	
   produced	
   calcium	
   hydroxide.	
  
Travertines	
   arising	
   from	
   Eq.	
   2,	
   related	
   to	
   CO
2
	
  ingassing	
   rather	
   than	
   outgassing,	
   are	
   widely	
  
distributed	
  but	
  uncommon.	
  
Another	
  process	
  may	
  be	
  described	
  as	
  groundwater	
  alkalisation	
  and	
  is	
  observed	
  when	
  groundwater	
  
rich	
  in	
  calcium	
  mixes	
   with	
  alkaline	
  surface	
  water.	
  Hydroxyl	
  ions	
  in	
  the	
  lake	
  water	
  react	
  with	
  
bicarbonate	
  (HCO
3
-‐
)	
  to	
  form	
  carbonate	
  (CO
3
2–
)	
  followed	
  by	
  precipitation	
  of	
  calcium	
  carbonate	
  (Eq.	
  	
  
3)	
  (Pentecost,	
  2005).	
  
	
  
Ca	
  (HCO
3
)
2
	
  +	
  OH
–
	
  =	
  CaCO
3
	
  +	
  HCO
3
–
	
  +	
  H
2
O	
   	
   	
   Eq.	
  	
  3	
  
	
  
This	
   reaction	
   is	
   mainly	
   confined	
   to	
   a	
   class	
   of	
   alkaline	
   and	
   saline	
   lakes	
   (such	
   as	
   Mono	
   Lake,	
  
California	
  and	
  Pyramid	
  Lake,	
  Nevada)	
  where	
  the	
  OH
–
	
  concentration	
  is	
  elevated	
  as	
  a	
  result	
  of	
  
6 
geochemical	
  processes	
  (Pentecost,	
  2005).	
  
Another	
  travertine	
  process	
  is	
  the	
  ‘common	
  ion	
  effect’.	
  The	
  best	
  known	
  example	
  is	
  related	
  by	
  the	
  
reaction	
  of	
  groundwater	
  infiltrating	
  e vaporites	
  that	
  become	
  saturated	
  with	
  gypsum	
  or	
  anhydrite	
  
(CaSO
4
)	
  (Pentecost,	
  2005).	
  
Gypsum-‐saturated	
  waters	
  contain	
  high	
  concentrations	
  of	
  CaSO
4
,	
  about	
  2	
  g	
  L
-‐1
.	
  When	
  mixed	
  with	
  a	
  
Ca	
  bicarbonate	
  water,	
  Ca	
  is	
  sufficiently	
  elevated	
  to	
  exceed	
  the	
  solubility	
  pr oduct	
  of	
  calcite	
  and	
  
precipitation	
  follows	
  (Pentecost,	
  2005).	
  
	
  
3.1	
  -‐	
  ARAGONITE	
  VS.	
  CALCITE	
  PRECIPITATION	
  
The	
  controls	
  on	
  the	
  type	
  of	
  mineralogy	
  precipitated,	
  whether	
  calcite	
  or	
  aragonite,	
  are	
  poorly	
  
understood.	
  There	
  are	
  several	
  hypotheses	
  about	
  the	
  processes	
  influencing	
  carbonate	
  mineralogy	
  
precipitation	
  (Jones	
  and	
  Renaut,	
  2010)	
  such	
  as:	
  
• Water	
  temperature; 	
  
• Growth	
  inhibitors;	
  
• CO
2
	
  degassing	
  and	
  saturation	
  levels; 	
  
• Microbial	
  growth.	
  
Obviously,	
  these	
  factors	
  may	
  operate	
  simultaneously	
  making	
  it	
  difficult	
  to	
  understand	
  what	
  the	
  
most	
  important	
  component	
  is	
  that	
  influences	
  the	
  type	
  of	
  precipitation.	
  
	
  
3.1.1	
   -‐	
  WATER	
  TEMPERATURE	
  
Aragonite	
   precipitation	
   has	
   commonly	
   been	
   attributed	
   to	
   precipitation	
   from	
   water	
   with	
  
temperatures	
  of	
  >40-‐45°C	
  (e.g.,	
  Moore,	
  1956;	
  Siegel,	
  1965;	
  Folk,	
  1994).	
  Kitano	
  (1962a)	
  instead,	
  
suggested	
  that	
  aragonite	
  would	
  form	
  only	
  if	
  the	
  temperature	
  is	
  >60°C.	
  
Calcite	
  precipitates	
  directly	
  from	
  waters	
  with	
  temperatures	
  of	
  >90°C	
  in	
  Kenya	
  (Jones	
  and	
  Renaut,	
  
1995)	
  and	
  New	
  Zealand	
  (Jones	
   and	
  Renaut,	
  1996),	
   therefore	
  the	
  assumption	
  that	
  aragonite	
  is	
  
favoured	
   by	
   temperatures	
   of	
   >40-‐45°C	
   does	
   not	
   always	
   apply.	
   The	
   agitation	
   of	
   the	
   water,	
  
irrespective	
  of	
  its	
   chemical	
  composition	
  and	
  temperature,	
  will	
  increase	
  the	
  rate	
  of	
  CO
2
	
  exsolution	
  
that,	
  in	
  turn,	
  may	
  affect	
  the	
  CaCO
3
	
  saturation	
  of	
  the	
  water	
  (Kitano,	
  1962a).	
  
These	
  considerations	
  indicate	
  that	
  the	
   temperature/polymorph	
  relationship	
  may	
  only	
  apply	
  in	
  
situations	
  where	
  the	
  waters	
  are	
  not	
  strongly	
  agitated	
  (rare	
  in	
  many	
  springs)	
  and	
  do	
  not	
  contain	
  
the	
   concentrations	
   of	
   ions	
   or	
   trace	
   elements	
   that	
   appear	
   to	
   influence	
   precipitation	
   of	
   the	
  
polymorphs	
  (Jones	
  and	
  Renaut,	
  2010).	
  
	
  
7 
3.1.2	
   -‐	
  GROWTH	
  INHIBITORS 	
  
Various	
  studies	
  showed	
  that	
  the	
  presence	
  of	
  some	
  chemical	
  elements	
  in	
  the	
  water	
   could	
  inhibit	
  or	
  
promote	
  the	
  precipitation	
  of	
  calcite	
  and/or	
  aragonite.	
  
Kitano	
  (1962b)	
  discovered	
  that	
  the	
  Alkali-‐Chlorides	
  migh t	
  inhibit	
  aragonite	
  precipitation,	
  while	
  Sr	
  
and	
  Mg	
  can	
  increase	
  the	
  presence	
  of	
  aragonite.	
  
The	
  aragonite	
  precipitation	
  is	
  related	
  to	
  the	
  Mg/Ca	
  ratio	
  of	
  the	
  water,	
  in	
  fact	
  Kitano	
  (1962 b)	
  
synthesized	
  the	
  aragonite	
  in	
  laboratory	
  by	
  adding	
  MgCl
2
	
  in	
  the	
  solution.	
  
Folk	
  (1994)	
  suggested	
  that	
  aragonite	
  will	
  precipitate	
  from	
  any	
  water	
  that	
  has	
  an	
  Mg/Ca	
  ratio	
  >	
   2:1,	
  
irrespective	
   of	
   water	
   temperature.	
   In	
   springs	
   with	
   very	
   high	
   Mg/Ca	
   ratios	
   (e.g.,	
   >	
   20),	
   Mg-‐
carbonates	
   such	
   as	
   hydromagnesite	
   and	
   nesquehonite	
   may	
   precipitate	
   around	
   the	
   vent	
  
(Stamatakis	
  et	
  al.,	
  2007).	
  
	
  
3.1.3	
   -‐	
  CO
2
	
  DEGASSING	
  AND	
  SATURATION	
  LEVELS 	
  
Laboratory	
  experiments	
  and	
  interpretations	
  of	
  natural	
  precipitates	
  have	
  shown	
  that	
  changes	
  in	
  
supersaturation	
   caused	
   by	
   CO
2
	
  degassing	
   and/or	
   evaporation	
   commonly	
   influence	
   calcite	
   or	
  
aragonite	
  precipitation	
  (Branner,	
  1901;	
  Holland	
  et	
  al.,	
  1964;	
  Folk,	
  1974;	
  Ishigami	
  and	
  Suzuki,	
  1977;	
  
Cabrol	
  and	
  Coudray,	
  1982;	
  Chafetz	
  et	
  al.,	
  1991).	
  
Rapid	
   degassing	
   of	
   CO
2
	
  from	
   spring	
   waters	
   with	
   high	
   pCO
2
	
  can	
   produce	
  a	
  fluid	
  strongly	
  
supersaturated	
  with	
  respect	
  to	
  CaCO
3
,	
  leading	
  to	
  precipitation	
  around	
  the	
  vent.	
  Turbulent	
  flow	
  
increases	
  CO
2
	
  degassing	
  and	
  the	
  saturation	
  levels,	
  thereby	
  promoting	
  CaCO
3
	
  precipitation	
  (Jones	
  
and	
  Renaut,	
  2010).	
  Aragonite	
  precipitation,	
  as	
  opposed	
  to	
  calcite,	
  has	
  generally	
  been	
  associated	
  
with	
  waters	
  that	
  have	
  attained	
  very	
  high	
  levels	
  of	
  supersaturation	
  with	
  respect	
  to	
  CaCO
3
	
  (Kitano,	
  
1962a;	
  Holland	
  et	
  al.,	
  1964;	
  White	
  and	
  Gundy,	
  1974;	
  Ishigami	
  and	
  Suzuki,	
  1977;	
  Arno'rsson,	
  1989). 	
  
	
  
3.1.4	
   -‐	
  MICROBIAL	
  GROWTH	
  
Buczynski	
  and	
  Chafetz	
  (1991)	
  suggested	
  that	
  microbial	
  polymers	
  might	
  induce	
  CaCO
3
	
  polymorph	
  
forms,	
  irrespective	
  of	
  water	
  temperature	
  and	
  composition,	
  because	
  they	
  may	
  inhibit	
  the	
  transfer	
  
of	
  ions	
  to	
  developing	
  nucleation	
  centres.	
  
Similarly,	
   Guo	
   and	
   Riding	
   (1992)	
   showed	
   that	
   aragonitic	
   laminae	
   in	
   the	
   Rapolano	
   Terme	
  
travertines	
  in	
  Central	
  Italy	
  formed	
  from	
  waters	
  with	
  a	
  temperature	
  >45°C	
  because	
  of	
  associated	
  
microbial	
  activity.	
  
In	
  Pleistocene	
  travertine	
  deposits	
  exposed	
   in	
  quarries	
  at	
   Rapolano	
  Terme	
  (Tuscany),	
   Folk	
  e t	
  al.	
  
(1985)	
  interpreted	
  the 	
  large	
  amount	
  of	
  regular ly	
  laminated	
  travertines	
  as	
   deposits	
  controlled	
  by	
  
8 
microbial	
   activity: 	
  laminae	
   were	
   formed	
   during	
   diurnal	
   changes	
   in	
   precipitation	
   related	
   to	
  
variations	
  in	
  the	
  activity	
  of	
  photosynthetic	
  bacteria.	
   Folk	
  et	
  al.	
  (1985)	
   identified	
  evidences	
   of	
  
photosynthetic	
   activity	
   also	
  in	
   the	
   travertine	
   deposits	
   of	
   Mammoth	
   Hot	
   Springs,	
   Yellowstone	
  
National	
  Park,	
  Wyoming.	
  
Unfortunately,	
  there	
  are	
  only	
  a	
  few	
  studies	
  that	
  allow	
  the	
  understanding	
  of	
  the	
  interactions	
  
between	
  the	
  aragonite	
  precipitation	
  and	
  the	
  microbial	
  growth.	
  
	
  	
  
9 
4	
   -‐ 	
   TRAVERTINE	
  FACIES 	
  
There	
  are	
  many	
  studies	
  regarding	
  the	
  travertine	
  facies,	
   and	
  many	
  authors	
   elaborated	
  classifica-‐
tions	
  of	
  the	
  carbonate	
  fabric	
  types	
  precipitated	
  within	
  travertine	
  depositional	
  systems.	
  	
  
The	
  first	
  studies	
   about	
  travertine	
  petrography	
  focused	
  on	
   the	
  travertine	
  quarries	
  of	
  central	
  Italy	
  
were	
  performed	
   by	
  Chafetz	
  and	
  Folk	
  (1984),	
   followed	
  by	
   Guo	
  and	
  Riding	
  (1998),	
  who 	
  recognized	
  
seven	
  main	
  travertine 	
  lithotypes:	
  	
  
• crystalline	
  crust; 	
  
• shrub;	
  
• paper-‐thin	
  raft;	
  
• coated	
  bubble; 	
  
• pisoid;	
  
• lithoclast;	
  
• reed.	
  
	
  
4.1	
  –	
  CRYSTALLINE	
  CRUST	
  
This	
  facies	
  is	
  very	
  common	
  in	
  the	
  travertine	
  and	
   is	
  associated	
  with	
  high-‐energy	
  environment 	
  
(Smooth	
  Slope	
  and	
  Terraced	
   Slope;	
  Guo	
  and	
  Riding,	
  1998).	
  Jones	
  and	
  Kahle	
  (1986)	
  described	
  this	
  
facies	
  as	
  single	
  crystal	
  dendrite s	
  with	
  multiple	
  level	
  of	
  branching.	
  
Crystalline	
  dendrite s	
  are	
  divided	
  in	
  two	
  different	
   classes:	
  crystallographic	
  and	
  non-‐crystallographic	
  
(Fig.	
  1.2;	
  Keith	
  and	
  Padden,	
  1964).	
  
Fig.	
  1.2:	
  Diagram	
  representation	
  of	
   crystalline	
   dendrites	
   (after	
  Jones	
  and	
   Renaut,	
  1995)	
  
	
  
10 
Crystallographic	
   dendrite	
   has	
   a	
   definite	
   and	
   regular	
   orientation	
   of	
   the	
   branches,	
  while	
   non -‐
crystallographic	
  dendrite	
  has	
  a	
  complex	
  morphology	
  and	
  orientation	
  (Fig.	
  1.2;	
  Keith	
  and	
  Padden,	
  
1986).	
  
Non-‐crystallographic	
  dendrite	
  has	
  two	
  different	
  fabrics:	
  a)	
  feather	
  type,	
  characterized	
  by	
  complex	
  
branches	
  and,	
  usually	
  it	
  has	
  a	
  pinnate	
  form,	
  and	
  b)	
  scandulitic	
  type,	
  which	
  has	
  branches	
  formed	
  by	
  
"plate	
  crystal"	
  that	
  are	
  stacked	
  en	
  echelon	
  (Fig.	
  1.2)	
  (Jones	
  and	
  Renaut,	
  1995).	
  
The	
  same	
  type	
  of	
  flowing	
  water	
  forms	
  feather	
  and	
  scandulitic	
  crystals	
  but	
  the	
  growth	
  setting	
  is	
  
different.	
  The 	
  feather	
  dendrites	
  grow	
  in	
  water	
  where	
  the	
  water 	
  flow	
  is	
  constant	
  and	
  with	
  high	
  
energy,	
  instead	
  the	
  scandulitic	
  dendrites	
  are	
  formed	
  in	
  	
  particular	
  microenvironment s	
  dominated	
  
by	
  intermittent	
  flow	
  over	
  a	
  terrace,	
  dam	
  or	
  sloping	
  mound	
  surface	
  (Jones	
  and	
  Renaut,	
  1995).	
  	
  
The	
  crystalline	
  dendrites	
  also	
  correspond	
  to	
  “ray	
  crystals”	
  by	
  Folk	
  et	
  al.	
  (1985)	
  and	
  “feather	
  
dendrite”	
  or	
  “crystalline	
  crust”	
  by	
  Guo	
  and	
  Riding	
  (1992,	
  1998).	
  
	
  
4.2	
  –	
  SHRUB 	
  
Kitano	
  (1963) 	
  used	
  the	
  term	
  “shrub”	
   for	
  the	
  first	
  time	
  and	
  subsequently	
  it	
  was	
  adopted	
  by 	
  Chafetz	
  
and	
  Folk	
  (198 4)	
  to	
  describe	
  travertine	
  in	
  the	
  Tivoli	
  area	
  (Central	
  Italy).	
  
The	
  shrubs	
  are	
  characterized	
  by	
  an	
  upward	
  expanding	
  growth	
   and	
  consists	
  of	
  peloids,	
  micritic	
  clots	
  
and	
  microsparite 	
  organised	
  in	
  a	
  tree-‐like	
  centimetre	
  size	
  form.	
  Typically	
   shrubs	
  grow	
  in	
  terrace	
  
pools	
  and	
  depression	
  systems	
  or	
  sub-‐horizontal	
  layers	
  (Guo	
  and	
  Riding,	
  1998),	
  therefore	
  they	
  are	
  
typical	
  micro-‐fabric	
  of	
  low	
  energy	
  environments	
  (Guo	
  and	
  Riding,	
  1998).	
  
Chafetz	
  and	
  Folk	
  (198 4)	
  suggested	
  that	
  bacteria	
  play	
  an	
  important	
  role	
  to	
  shrub	
  precipitation.	
  
Chafetz	
  and	
  Guidry	
  (1999)	
  distinguished	
  three	
  kinds	
  of	
  shrub:	
  bacteria l,	
  crystal	
  and	
  ray	
  crystal.	
  
The	
  bacterial	
  shrub	
  name	
  is	
  due	
  to	
  fully	
  bacterially	
  precipitation	
  and	
  the	
  fabric	
  consists	
  of	
  micrite	
  
and	
  microsparite.	
  In	
  contrast	
  crystal	
  and	
  ray	
  crystal	
  shrubs	
  consist	
  of	
  sparite	
  crystals	
  and	
  are	
  due	
  
to	
  abiotic	
  precipitation	
  (Chafetz	
  and	
  Guidry,	
  1999).	
  Pentecost	
  (1990)	
  proposed	
  an	
  abiotic	
  origin	
  for	
  
all	
  the	
  shrub	
  formation.	
  
	
  
4.3	
  –	
  PAPER-‐THIN	
  RAFT	
  
Paper-‐thin	
  rafts	
  are	
  thin	
  crystalline	
  layers	
  precipitated	
  at	
  the	
  water	
  surface	
  (Guo	
  and	
  Riding,	
  1998).	
   	
  
This	
  fabric	
  is	
  localized	
  on	
  the	
  floors	
  of	
  small	
  stagnant	
  pools	
   where	
  they	
  sink	
  after	
  precipitation	
  on	
  
the	
  surface	
  and	
  it	
  is	
  a	
  typical	
  de posit	
  of	
  low-‐energy	
  environment s	
  (Guo	
  and	
  Riding,	
  1998).	
  
The	
  raft	
  remains	
  intact	
  only	
  when	
  there	
  is	
   not	
  a	
  strong	
  turbulence	
  of	
  the	
  water	
  because	
  the	
  
desiccation	
  promotes	
  a	
  good	
  deposition	
  on	
  sub-‐horizontal	
  layers	
  of	
  shrub	
  or	
  micritic	
  deposit.