5
Commento 
 
 
 
 
Questa tesi, scritta in inglese, è stata sviluppata per un periodo di circa 
7 mesi presso la Fachhocschule di Augsburg in Germania nell’ambito 
del progetto Socrates-Erasmus ed ha avuto come oggetto lo studio 
della fattibilità di un sistema radar per treni. 
 
Nel 1° capitolo sono state introdotte nozioni teoriche e pratiche 
necessarie al miglioramento e allo studio dell’ affidabilità. 
In particolare dopo aver introdotto le principali componenti che 
caratterizzano l’affidabilità di un sistema , quali : Bathub Hazard 
Curve, MTTF,MTBF,disponibilità , si è passati all’ analisi delle 
diverse reti di affidabilità :struttura serie , parallelo, standby 
ridondante  e configurazione K-out-of-n . 
Dopo di ciò si è trattato  l’uso della tecnica di analisi Fault tree per 
sistema con componenti riparabili e utilizzando la tecnica Lambda 
Tau. 
Si è poi considerata l’affidabilità di un sistema soggetto a causa 
comune di fallimento, e si è concluso il capitolo menzionando la 
tecnica di ridondanza. 
Nel 2° capitolo si è passati al calcolo dell’affidabilità del sistema 
composto da tre sensori radar , utilizzando gli strumenti sviluppati nel 
primo capitolo;sono stati eseguiti calcoli di affidabilità di R
gt 
λ
gt
,MTBF,disponibilità considerado le seguenti situazioni 
 
-  Del semplice sistema 2-out-of-3  
-  Utilizzando la tecnica 1-out-of-2  
-  Introducendo la condizione di causa comune di fallimento  
- Uso di componenti riparabili 
- Metodo Lambda Tau 
 
Si è poi introdotta la tecnica FMECA applicata allo studio 
dell’affidabilità del singolo sensore radar ,sia dal punto di vista 
quantitativo  con lo studio della criticità , che dal punto di vista 
qualitativo con lo studio della matrice di criticità. 
L’ ultimo capitolo è stato dedicato alla progettazione di un sistema d’ 
antenna per il radar monopulse. 
 6
Nel caso specifico si è progettata e realizzata un’antenna radar Patch 
4x4 del tipo monopulse. 
Per conferire la caratteristica di monopulse alla patch ci si è serviti di 
un ibrido 180°. 
La patch è stata progettata (e simulati i relativi diagrammi di 
radiazione)utilizzando il software di programmazione  MSTRIP40 e 
EAGLE,  in seguito è stata realizzata  in collaborazione con la 
SIEMENS. 
Sono state  poi eseguite le misurazioni dei diagrammi di radiazione 
dell’antenna stessa all’ interno di una camera anecoica del laboratorio, 
i quali hanno fornito degli ottimi risultati in considerazione del tipo di 
antenna.  
Alla fine si è introdotta allo scopo di un confronto la realizzazione di 
una possibile horn antenna del tipo monopulse.  
 
 
 
 
 
 
 
 
 
 
 
 
 7
CHAPTER 1    -   RELIABILITY INTRODUCTION 
 
 
 
 
1.1 Introduction to General Reliability Function 
 
 
 
The reliability is defined as the probability that the system will operate 
to an agreed level of performance for a specific period , subject to 
specified environmental conditions. 
 
 -General concepts 
Suppose no identical components are under test,after t ,n
f
(t) fail and 
n
s
(t) survive . 
The reliability function R(t) is defined by 
                        
 
   (1.1)                          R(t) = n
s
(t) / (n
s
(t) + n
f
(t)) 
 
Since                            ns(t) + n
f
(t) =no 
 
The  equation becomes 
                  
 
   (1.2)                           R(t) =  ns(t) /  no 
 
 
And 
 
(1.3)                              R(t) +  F(t) = 1 
 
 
Where  F(t) is the failure probability at time t. 
 
 8
By using of few relationship, it is possible to define the istantaneous 
failure or hazard rate: 
 
(1.4)               λ (t) = -1/R(t) * dR(t)/dt = f(t) / R(t) 
 
 
Equation  (1.4)  may  be  written in the following form 
                                             
                                                                                                                       
(1.5)             -dR(t)/R(t) = λ (t) dt 
 
 
By integrating both sides of (1.5) over the time range 0 to t, it is 
possible to get  
 
                                                        t                           R(t) 
                  Ι   λ (t) dt  =  -Ι 1/R(t)  dR(t)  
                  0                          t 
 
For the known initial condition that at t=0, R(t)=1 the above integral 
expression becomes 
 
                                                     t                                                                      
(1.6)                     ln R(t) =  - Ι  λ (t) dt   
                                                   0 
 
 
The following  general reliability function is obtained from(1.6): 
 
                                                                                                   
(1.7)                           R(t) = e
-Ιλ t dt
    
 
 
where λ (t) is th time dependent failure  rate, also called the azard rate. 
 9
The above expression can be used to obtain a component reliability  
for any known failure time distribution. 
 
 
 
1.1.1 Bathtub Hazard Rate Curve 
 
 
This azard rate curve , shown in fig 1.1 is regarded as a typical  hazard 
curve, especially when representing the failure behaviour of electronic 
componenets. 
As shown in figure 1.1 the decreasing  hazard rate is sometime s called 
the “burn–in period “. 
 
There are also several other names for this period such as debugging 
period , infant mortality period , break-in period. 
Occurrence of failures during this period is normally attribuited to 
design or manufacturing defects . 
 
The constant part of this bathlub hazard rate is  called the “useful 
period,” which begins just after the infant mortality period and ends 
just before the “wear-out period”. 
 
The wear –out period begins when an equipment or component has 
aged or bypassed its useful operating life . 
Consequently , the number of failures during this time begin to 
increase. 
Failures that occur randmoly or in another word unpredicadictably. 
The hazard rate shown in Figure 1.1 can be represented by the 
following function 
 
 
λ (t) = k λ  c t
(c-1)
 
+(1-k) b t 
(b-1)
 β  e
(β t^b)
 
 
 
for   b,c, λ ,β  > 0               0<k<1             t>0   and c=0.5  b=1  
where    b,c = shape parameters 
              β ,λ  = scale parameters 
                  t = time 
 10
 
        λ (t) 
                                                                                         
 
 
 
 
 
 
 
                                Burn –in period           Useful life period            Wearout period 
                                                                                             
                           0                                                                             t 
 
               Figure1.1 Bathtub curve 
 
 
 
1.1.2 Mean Time Between Failures  
 
 
The most useful measure of performance which does not involve the 
period of observations is the mean time between failure (MTBF). 
 
The MTBF of a system may be measured by testing it for a total 
period T, during which N fault occur. 
 
Each fault is repaired and the equipment put back on test , the repair 
time being excluded from the total test time T . 
 
The observed MTBF is then given  by  
 
                            MTBF = T/N 
 
 
This observed value is not necessarily the true MTBF since the 
equipment is usually observed for only a sample of its total life . 
Another way of expressing equipment reliability is the failure rate. 
For many electronics system the failure rate is approximately constant 
for much of the working life of the equipment . 
 11
Where  this is the case : 
 
                             λ  = 1/ MTTF 
 
Howevever , where λ  changes with time  , more than one parameter 
may be required to espress λ  as a function of  time  , and MTBF may 
be a more complicated function of λ  .    
 
 
 
1.1.3 Mean Time To Failure  (MTTF) 
 
 
The MTBF is a measure of reliability for repairable equipment , a 
similar measure is useful for components such as thermionic valves , 
resistors , capacitors , transistors , etc…, which are “throw – away “ 
items that can not be repaired . 
The correct for these components is the mean time to failure MTTF.  
 
The expected value E(t), in this case MTTF, of  a probability density 
function of the continuos random variable time t is given by 
 
                              E(t)=MTTF=Ι  t f(t) dt 
 
 
Where f(t) is the failure  density function. 
If a component’s failure times are exponentially distributed , MTTF is 
a reciprocal of the constant hazard rate λ  : 
                                        %  
                   MTTF  = Ι   t  λ    e 
(-λ  t)
  dt  = 1 /  λ  
                                      0 
 
 
 
 
 12
 
1.1.4 Availability 
 
 
Availability  is the probability that a systemwill operate satisfactorily 
at any point in time , where  time includes not only operating life but  
also active repair time and administrative and logistic time . 
The conventional equation for availability is   
 
 
(1.1.4)                A = MTBF / (MTBF) + MTTR ) 
 
and also              A = 1 - A 
 
 
Where A is the unavailability and A is the availability  , usually 
expressed as a percentage . 
 
MTBF is mean time between failures, and MTTR is the mean time to 
repair. 
MTTR is related to repair hours , while the calculation of MTBF is 
related to component operating hours . 
 
 
 
 
 13
 
1.2 Reliability Networks 
 
 
 
Four kinds of reliabillity networks have been studied : 
 
 
-Series structure  
 
-Parallel configuraion 
 
-Standby redundancy 
 
-K-out –of-n-configuration 
 
Now will be presented these four structure and later they will be 
applicate to the radar system under consideration. 
 
 
 
1.2.1 Series Structure 
 
 
This arrangement reppresents a system whose subsystem or 
components form a series network. 
If anyone of the subsistem or component fails, the series system 
experience  an overall system failure. 
A typical series system configuration is shown in the following figure 
 
                                    
 
 
 
 
      Figure 1.2 
 
   R1   R2    R3   Rn 
 14
If the series system component failure are statistically independent, 
then the reliability Rs of a series system with nonidentical components 
is given by  
                                              n                                                                  
(1.8)                            Rs  = ϑ  Ri          
                                             i=1 
 
 
Where n is the number  of components or subsystems and Ri is the 
reliability of ith component  or subsystem. 
If  the failure times of components are exponentially distributed(i.e.,if 
components have constant failure rates), then the ith component 
reliability may be written : 
 
 
(1.9)                        Ri(t) = e 
-λ i t
 
 
 
 
By substituting (1.9) into (1.8), 
 
 
                                                      n 
(1.10)                      Rs(t) =  e
  -∑
i=1
 λ i t 
                                                  
 
                                                                                            
MTTF is given by  
                                               ∝                                                              
(1.11)                    MTTF = Ι  e
-∑ λ i t
 dt  = 1 / ∑ λ i 
                                               0                        
 
 
 
The above expression shows that a series system(MTTF) is the 
reciprocal of sum of the series network component failure rates. 
 
 
 15
1.2.2 Parallel Configuration 
 
 
This configuration is shown in the following figure: 
 
 
 
 
 
 
 
   
 
  
 
 
 
 
 
    
 
Figure 1.3 Parallel configuration 
 
 
This system will fail if and only if all the units in the system 
malfunction. The model is based on the assumption that all the system 
units are active and load sharing. 
In addition it is assumed that the component failures are statistically 
independent. 
A parallel structure reliability Rp with nonidentical units or component 
reliability is given by 
 
 
                                               n 
(1.12)                       Rp = 1- Π  (1- Ri ) 
                                              i=1 
 
 
where n is the number of units. 
    R1 
    R2 
    R2 
 16
 
Ri is the reliability of ith component or subsystem. 
If the component failure rates are constant, then by substituing(1.9) 
into (1.12), 
 
 
                                               n      
(1.13)                       Rp = 1- Π  (1- e
-λ i t
 ) 
                                              i=1     
 
MTTF is obtained by integrating(1.13) over the interval (0,inf), 
 
 
                                                  ∝  
(1.14)                       MTTF = Ι  Rp(t) dt   
                                                   0 
 
For identical components , the above equation reduces to 
 
 
                                                          n 
(1.15)                      MTTF = (1/λ )  Σ  1/i 
                                                         i=1 
 
 
 
1.2.3 Standby Redundancy 
 
          
This type of redundancy represents a situation with one operating and 
n units as standbys.  
 
The standby redundancy arrangement is shown in the following   
Figure1.4 
 17
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
Figure 1.4 Standby Redundancy 
 
 
Unlike a parallel network where all units in the configuration are 
active , the standby units are not active . 
 
The system reliability of the (n+1) unit, which one unit is operating 
and n units on the standby mission until the operating unit fails,is 
given by 
                                                
                                               n    
(1.16)                        Rs(t) = Σ    ((λ  t )
i
 e
-λ  t 
) / i !  
                                              i=0        
 
The above equation is true if the following are true: 
 
1.The swithching arrangement is perfect. 
2.The units are identical. 
3.The units failure rates are constant. 
4.The standby units are as good as new. 
5.The unit failures are statistically independent. 
 
     1 
     2 
     n 
 18
In the case of (n+1), nonidentical units whose failure time density 
functions are different, the standby redundant system failure density is 
given by 
                     t       yn             yo 
(1.17) fst = Ι      Ι ....Ι f1(y1)…fn+1(t-yn) dy1..dyn      
               yn=0     yn-1=0      y1=0 
 
 
Thus the system reliability can be obtained by integrating fst(t)over the 
interval (t,inf) as follows: 
                                                ∝  
(1.18)                         Rs(t) =Ι  fs(t) dt 
                                               0 
 
 
1.2.4 K-out of-N Configuration 
 
 
This is another form of redundancy.it is used where a specified 
number of units must be good for the system success. 
 
The series and parallel configuration in the preceding sections are 
special cases of this configuration,that is , k=n and k=1, respectively. 
 
Reliability of this type of configuration is obtained by applying the 
binomial distribution. 
The system reliabillity for k-out-of-n number of independent and 
identical units is given by: 
 
                                   n 
(1.19)              Rk/n = Σ   (n   i)  R
i
   (1-R)
n-i
    
                                  i=k