Skip to content

Modelli in finanza matematica: aspetti analitici e probabilistici

Dal Modello di Black e Scholes ai Modelli a Volatilità Stocastica

In questo capitolo verrà introdotto sinteticamente il modello di riferimento per la descrizione dei mercati finanziari: il modello di Black e Scholes. Si tratta di un modello matematico che permette di risolvere un problema di "option pricing" cioè un problema di calcolo del prezzo di opzioni. Per la valutazione di opzioni di tipo europeo, infatti, è frequentemente usata la nota formula di Black e Scholes, che deriveremo utilizzando due differenti approcci.

Il modello di Black e Scholes si basa su alcuni assunti che si sono dimostrati per certi versi lontani dalla realtà dei mercati; tra questi si possono elencare la continuità del processo di prezzo, l'assenza di costi di transazione, la distribuzione normale e indipendente dei rendimenti e la volatilità costante del processo di prezzo. La formula di Black e Scholes, ad esempio, è anche usata per calcolare la volatilità del sottostante osservando il prezzo dell'opzione (volatilità implicita): se si effettua il calcolo della volatilità implicita in diversi istanti, si vede che essa varia sensibilmente con il variare del tempo, contraddicendo il modello di Black e Scholes.

Una delle più grosse differenze tra ciò che si osserva nei mercati finanziari e le previsioni del modello di Black e Scholes è, però, il prezzo delle opzioni europee. Vedremo, infatti, dopo aver introdotto il cosiddetto "effetto smile", che esso mette in evidenza come il modello di Black e Scholes, in molti casi, non sia sufficientemente predittivo.

Successivamente presenteremo diverse modifiche al modello, ottenute con l'aggiunta di una componente stocastica nella volatilità del sottostante, e mostreremo brevemente quale sia il loro apporto nella qualità di predizione della distribuzione di probabilità del prezzo di un titolo azionario, e quindi del prezzo dei contratti derivati.

Questo brano è tratto dalla tesi:

Modelli in finanza matematica: aspetti analitici e probabilistici

CONSULTA INTEGRALMENTE QUESTA TESI

La consultazione è esclusivamente in formato digitale .PDF

Acquista

Informazioni tesi

  Autore: Marilena Morlino
  Tipo: Tesi di Laurea
  Anno: 2010-11
  Università: Università degli Studi di Bari
  Facoltà: Scienze Matematiche, Fisiche e Naturali
  Corso: Matematica
  Relatore: Silvia Romanelli
  Lingua: Italiano
  Num. pagine: 132

FAQ

Per consultare la tesi è necessario essere registrati e acquistare la consultazione integrale del file, al costo di 29,89€.
Il pagamento può essere effettuato tramite carta di credito/carta prepagata, PayPal, bonifico bancario, bollettino postale.
Confermato il pagamento si potrà consultare i file esclusivamente in formato .PDF accedendo alla propria Home Personale. Si potrà quindi procedere a salvare o stampare il file.
Maggiori informazioni
Ingiustamente snobbata durante le ricerche bibliografiche, una tesi di laurea si rivela decisamente utile:
  • perché affronta un singolo argomento in modo sintetico e specifico come altri testi non fanno;
  • perché è un lavoro originale che si basa su una ricerca bibliografica accurata;
  • perché, a differenza di altri materiali che puoi reperire online, una tesi di laurea è stata verificata da un docente universitario e dalla commissione in sede d'esame. La nostra redazione inoltre controlla prima della pubblicazione la completezza dei materiali e, dal 2009, anche l'originalità della tesi attraverso il software antiplagio Compilatio.net.
  • L'utilizzo della consultazione integrale della tesi da parte dell'Utente che ne acquista il diritto è da considerarsi esclusivamente privato.
  • Nel caso in cui l'Utente volesse pubblicare o citare una tesi presente nel database del sito www.tesionline.it deve ottenere autorizzazione scritta dall'Autore della tesi stessa, il quale è unico detentore dei diritti.
  • L'Utente è l'unico ed esclusivo responsabile del materiale di cui acquista il diritto alla consultazione. Si impegna a non divulgare a mezzo stampa, editoria in genere, televisione, radio, Internet e/o qualsiasi altro mezzo divulgativo esistente o che venisse inventato, il contenuto della tesi che consulta o stralci della medesima. Verrà perseguito legalmente nel caso di riproduzione totale e/o parziale su qualsiasi mezzo e/o su qualsiasi supporto, nel caso di divulgazione nonché nel caso di ricavo economico derivante dallo sfruttamento del diritto acquisito.
  • L'Utente è a conoscenza che l'importo da lui pagato per la consultazione integrale della tesi prescelta è ripartito, a partire dalla seconda consultazione assoluta nell'anno in corso, al 50% tra l'Autore/i della tesi e Tesionline Srl, la società titolare del sito www.tesionline.it.
L'obiettivo di Tesionline è quello di rendere accessibile a una platea il più possibile vasta il patrimonio di cultura e conoscenza contenuto nelle tesi.
Per raggiungerlo, è fondamentale superare la barriera rappresentata dalla lingua. Ecco perché cerchiamo persone disponibili ad effettuare la traduzione delle tesi pubblicate nel nostro sito.
Scopri come funziona

DUBBI? Contattaci

Contatta la redazione a
[email protected]

Ci trovi su Skype (redazione_tesi)
dalle 9:00 alle 13:00

Oppure vieni a trovarci su

Parole chiave

strumenti finanziari derivati
black-scholes
volatilità stocastica
volatility smile
heston
volatilità costante
mercati finanziari
finanza matematica
calcolo stocastico
banach
feller
dominio massimale

Non hai trovato quello che cercavi?


Abbiamo più di 45.000 Tesi di Laurea: cerca nel nostro database

Oppure consulta la sezione dedicata ad appunti universitari selezionati e pubblicati dalla nostra redazione

Ottimizza la tua ricerca:

  • individua con precisione le parole chiave specifiche della tua ricerca
  • elimina i termini non significativi (aggettivi, articoli, avverbi...)
  • se non hai risultati amplia la ricerca con termini via via più generici (ad esempio da "anziano oncologico" a "paziente oncologico")
  • utilizza la ricerca avanzata
  • utilizza gli operatori booleani (and, or, "")

Idee per la tesi?

Scopri le migliori tesi scelte da noi sugli argomenti recenti


Come si scrive una tesi di laurea?


A quale cattedra chiedere la tesi? Quale sarà il docente più disponibile? Quale l'argomento più interessante per me? ...e quale quello più interessante per il mondo del lavoro?

Scarica gratuitamente la nostra guida "Come si scrive una tesi di laurea" e iscriviti alla newsletter per ricevere consigli e materiale utile.


La tesi l'ho già scritta,
ora cosa ne faccio?


La tua tesi ti ha aiutato ad ottenere quel sudato titolo di studio, ma può darti molto di più: ti differenzia dai tuoi colleghi universitari, mostra i tuoi interessi ed è un lavoro di ricerca unico, che può essere utile anche ad altri.

Il nostro consiglio è di non sprecare tutto questo lavoro:

È ora di pubblicare la tesi